Mark scheme - Redox

Question		on	Answer/Indicative content	Marks	Guidance
1			Element oxidised: Oxygen/O Change from: –2 to 0 √ Element reduced: Nitrogen/N Change from +5 to +4 √	2(AO2.2×2)	MAX 1 mark if no '+' sign for oxidation number ALLOW 2– ALLOW 5+ AND 4+ ALLOW 0 ₂ for oxygen ALLOW 1 mark for all oxidation numbers correct, but oxidised and reduced the wrong way around IGNORE numbers around equation <i>i.e. treat as rough working</i> Examiner's Comments Less than half the candidates answered this question correctly. This may be because they are not used to assigning oxidation numbers within formulae that contain brackets.
			Total	2	
2		i	Oxidised AND (Mg) transfers/loses/donates 2 electrons √ 2 essential	1	 ALLOW Mg loses 6 electrons: 3 Mg in equation ALLOW Mg → Mg²⁺ + 2e⁻ IGNORE oxidation numbers (even if wrong) Examiner's Comments Despite the question clearly asking for a response in terms of the number of electrons transferred, most candidates answered in terms of oxidation number changes. Candidates are recommended to read the question and to answer in terms of its requirements. Underlining 'number of electrons' may have helped candidates to answer the question that had been set.
		ii	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 2.26 (3 SF) award 3 marks $n(H_3PO_4) = \frac{1.24 \times 50.0}{1000} = 0.062(0) \text{ (mol)} \checkmark$	3	At least 3SF needed throughout BUT ALLOW no trailing zeroes (e.g. 0.062 for

LOW ECF from $n(H3PO4)$ LOW ECF from $n(Mg)$
LOW ECF from $n(H3PO4)$ LOW ECF from $n(Mg)$ MMON ERRORS for 2 marks ratio omitted $\rightarrow n(Mg) = 0.062(0) \rightarrow$
LOW ECF from $n(Mg)$ MMON ERRORS for 2 marks ratio omitted $\rightarrow n(Mg) = 0.062(0) \rightarrow$
MMON ERRORS for 2 marks ratio omitted $\rightarrow n(Mg) = 0.062(0) \rightarrow$
1 (g) erted 2:3 ratio → <i>n</i> (Mg) = 0.0413 → 1.00
aminer's Comments
st candidates are competent at answering estions based on the mole. Almost all indidates were able to calculate the ount of H3PO4 as 0.062 mol. Candidates in needed to use the 2:3 mole ichiometric ratio to show that 0.093 mol of reacts, which has a mass of 2.26 g to the uired 3 significant figures. The inmonest errors were use of the inverse ratio to obtain 1.00 g Mg, or to omit the o to obtain 1.51 g Mg, as shown in the emplar. Candidates are advised to show ar working so that credit can be awarded such responses by applying error carried ward.
emplar 1 (ii) The student plans to add magnesium to $60,00^{-9}$ of $1.24 \text{ moldm}^{-9} \text{ HyPO}_{e}$. Calculate the mass of magnesium that the student should add to react exactly with the phosphore and. Give your answer to three significant figures. $SO_{CP}^{-4} = 0.05 \text{ GeV}^{-3}$ $1.24 \times 0.05 = 0.062 \text{ mol}$ $6.062 \times 2.4 \cdot 3 = 1.50\%$ 1.50% 1.50% 1.50% 1.50% 1.50% 1.50% 1.50% 1.50% 1.50% 1.50% 1.50%
LOW moval of water Evaporate/ distil water/solution/liquid ✓ IGNORE 'distil' if product OR H ₂ is distilled Ilection of remaining solid ✓ Requires realisation that solid remains NORE 'Leave to crystallise' (already solid) aminer's Comments

				based on practical work. There were many random responses to this question, with relatively few candidates identifying that solid magnesium phosphate could be obtained by filtration, followed by drying.
				In equation: NO ECF from incorrect formula ALLOW multiples IGNORE state symbols (even if incorrect)
		Formula MgO OR Mg(OH)2 OR MgCO3 OR		Soluble Mg salts include MgCl ₂ , MgSO ₄ , Mg(NO ₃) ₂ , MgBr ₂ , MgI ₂ If unsure, check with TL e.g. $3MgCl_2 + 2H_3PO_4 \rightarrow Mg_3(PO_4)_2 + 6HCl$
	iv	soluble Mg salt \checkmark Equation $3MgO + 2H_3PO_4 \rightarrow Mg_3(PO_4)_2 + 3H_2O$ OR $3Mg(OH)_2 + 2H_3PO_4 \rightarrow Mg_3(PO_4)_2 + 6H_2O$ OR $3MgCO_3 + 2H_3PO_4 \rightarrow Mg_3(PO_4)_2 + 3CO_2 + 3H_2O$	2	Examiner's Comments Candidates were expected to identify a suitable reagent for this reaction, with most choosing magnesium oxide, hydroxide or carbonate. Credit was also given for using a soluble magnesium salt such as its sulfate, chloride or nitrate. The correct equation often followed, but errors sometimes appeared in the form of incorrect formulae, such as MgOH for magnesium hydroxide. The exemplar shows a good clear response, using MgO as the reagent. Exemplar 2 (M Magnesium phosphate can also be prepared by reacting phosphoric add with a compound of magnesium compound for this preparation and write the equation for the reaction.
		Total	8	Equation
3	i	Disproportionation Oxidation AND reduction of same element/iodine OR lodine has been oxidised and lodine has been reduced √ Oxidation from 0 to +1 in HIO √ Reduction from 0 to -1 in HI √	3	ALLOW I or I ₂ for iodine IGNORE numbers around equation for oxidation states ALLOW 1- for -1 AND 1+ for +1 NOTE (for iodine/I ₂) from 0 only needs to be seen once, does not need to be stated twice ALLOW 1 mark for 3 ox nos correct but no mention of words oxidation/reduction: 0 in I ₂ AND -1 in HI AND +1 in HIO

				ALLOW 1 mark for species missing: lodine oxidised (from 0) to +1 AND iodine reduced (from 0) to -1
				Examiner's Comments
				Most candidates were aware of disproportionation but lost marks by not stating the species or whether the process was oxidation or reduction.
				Exemplar 2
				(i) Iodine reacts with water as shown below. Lyth, or with + HIO Using oxidation numbers, explain with the reaction is a disproportionation. Dispropritionation is write the same observed in for outwine and reduced intro some reaction folice in return (HT) (a form HI and excluded (2011) in HIO Here the candidate has lost a mark for not stating the initial oxidation number of elemental iodine as 0.
				ALLOW (reacts with hydrocarbons to) form carcinogens/toxic compounds
	ïi	Chlorine is toxic/poisonous OR forms halogenated hydrocarbons OR	1	IGNORE chlorine causes cancer harmful/dangerous chlorine causes breathing problems
		forms carcinogens/toxic compounds \checkmark		Examiner's Comments
				The majority of candidates stated that chlorine is toxic or forms carcinogens, although some stated that chlorine is a carcinogen which was not credited. 12
		Total	4	
				ALLOW multiples, e.g. Al(s) + 3CH ₃ COOH(aq) → (CH ₃ COO) ₃ A1(aq) + $1\frac{1}{2}H_2(g)$
4	i	2 Al(s) + 6 CH ₃ COOHCaq) → 2 (CH ₃ COO ₃ Al(aq) + 3 H ₂ (g) √	1	Examiner's Comments The majority of candidates were able to balance this equation using whole numbers or half multiples. Where there was an error, it was invariably for the balancing number of H ₂ .

	ii	Element oxidised: aluminium/Al 0 to +3 √ Element reduced: hydrogen/H +1 to 0 √	2	 ALLOW 3+ for +3 and 1+ for +1 ALLOW H₂ for hydrogen ALLOW 1 mark for elements AND all oxidation numbers correct, but H in oxidised line and Al in reduced line '+' is required in +3 and +1 oxidation numbers IGNORE numbers around equation (<i>treat as rough working</i>) Examiner's Comments This question was not answered as well as expected. It was pleasing to see that almost all candidates recognised the importance of writing oxidation numbers correctly including a '+' or '-' sign where needed. Common mistakes included giving the total contribution from an element as opposed to the oxidation state of each atom of the element.
		Total	3	
5		Element aluminium/AI 0 to +3 √ Element hydrogen/H/H⁺ +1 to 0 √	2	MAX 1 mark if no '+' sign for oxidation number ALLOW 3+ ALLOW 1+ ALLOW 1+ ALLOW H ₂ for hydrogen ALLOW 1 mark for all oxidation numbers correct, but oxidised and reduced the wrong way around IGNORE numbers around equation <i>i.e. treat as rough working</i> Examiner's Comments A good proportion of candidates were able to achieve the 2 marks here. A minority correctly identified the elements, but not the oxidation numbers. Aluminium was credited more often than hydrogen, perhaps as only some of the hydrogen atoms are reduced. Some amazing oxidation states were claimed for S, O, AI and H with more electrons lost than the atoms had. Very few candidates assigned the oxidation and reduction incorrectly.

			Total	2	
			Magnesium (atoms) has been oxidised AND Because it has lost two electrons √ Copper (ions) has been reduced AND Because it has gained two electrons √	2	IGNORE use of oxidation numbers if electron gain/loss is mentioned. Electrons gain/loss could be in half equations In the absence of text look for evidence on the equation ALLOW 'donated' for 'lost'
					Assume 'Cu' refers to copper in 'CuSO4' ALLOW one mark two electrons gained and lost for each species but oxidation/reduction is incorrect or is omitted
6		i			ALLOW one mark for correct oxidation and reduction if electron transfer is omitted and correct changes of oxidation state are shown (ie Mg 0> (+)2 AND Cu (+)2 to 0)
					magnesium to copper
					This type of question in the past has proved difficult but the current cohort found little difficulty. By far, the most common error was to use changes in oxidation numbers as the basis of the redox rather than using the number of electrons gained and lost for the explanation of the redox process.
			Mg(s) + 2H ₂ O(I) ◊Mg(OH) ₂ (aq) + H ₂ (g) ii Correct reactants and products √ Balance and state symbols √		ALLOW multiples ALLOW Mg(OH) ₂ (s) ALLOW Mg(s) + H ₂ O(g) OR H ₂ O(l) MgO(s) + H ₂ (g) including state symbols for one mark
		ii		2	Examiner's Comments The equation for the reaction between magnesium and water was well known – but many erroneously assumed MgO was formed.
			Total	4	
7		i	$N_2O_3 = +3$ NO = +2 NO_2 = +4 \checkmark	1	ALLOW '3' OR '3+' etc ALLOW oxidation numbers written over the equation but IGNORE if oxidation numbers are given on the answer lines

				Examiner's Comments The correct answer was almost universally
	ii	Disproportionation √	1	QWC 'disproportionation' spelled correctly. Examiner's Comments The correct answer was almost universally known with just the rare misspelling of disproportionation seen.
		Total	2	
8	i	1s²2s²2p ⁶ 3s² √	1	ALLOW upper case S and P, and subscripts, e.g2S ₂ 3P ₆ Examiner's Comments This part was generally answered well showing a good understanding of electron configuration. Candidates frequently used subscripts rather than superscripts for denoting the number of electrons in a particular sub-shell and although this was still credited the correct use of notation should be emphasised in lessons.
	ii	(Mg) loses / transfers / donates two electrons √	1	ALLOW Mg loses the 3s electrons provided electronic configuration in (i) is 3_s^2 ALLOW Mg \rightarrow Mg ²⁺ + 2e ⁻ IGNORE reference to oxidation numbers / states Examiner's Comments Most candidates understood that oxidation resulted in the loss of electrons although some answers considered changes in oxidation number. A significant number of candidates did not specify how many electrons were lost when magnesium was oxidised preventing the award of the mark.
		Total	2	
9		CI (has been oxidised) from CI = -1 to CI = $0 \checkmark$ Mn (has been reduced) from Mn = +4 to Mn = +2 \checkmark	2	ALLOW 4+ OR 4 OR 2+ OR 2 ALLOW oxidation numbers written above the equation but IGNORE these if oxidation numbers are given in the text ALLOW one mark for Cl is oxidised because the oxidation number increased by 1 AND

				Mn is reduced because the oxidation number decreased by 2 ALLOW one mark if all oxidation numbers are correct but redox is incorrect. IGNORE HCI is oxidised AND MnO ₂ is reduced IGNORE correct references to electron loss / gain DO NOT ALLOW incorrect references to electron loss / gain Examiner's Comments Overall the answer to this question could be determined by most candidates. Some were confused by the fact that CI appeared in two oxidation states in the products and
				suggested that this was a type of disproportionation reaction with the Cl in MnCl₂ having a −2 oxidation state.
		Total	2	
				ALLOW 'donated' for 'lost' IGNORE where electrons are transferred to IGNORE $AI \rightarrow AI^{3+} + 3e^{-}$ DO NOT ALLOW 'an electron' or incorrect number of electrons
10		Oxidised AND because aluminium has lost (three) electrons ✓	1	Examiner's Comments
				This question was very well answered. Where candidates did not gain the mark it was often because they forgot to discuss the oxidation of aluminium in terms of electron loss, but instead justified it in by using oxidation numbers.
		Total	1	
11		Element oxidised: zinc / Zn 0 to +2 (1) Element reduced: C +4 to +2 (1)	2	allow 1 mark for all oxidation numbers correct, but oxidised and reduced the wrong way around max 1 mark if missing '+' or 'if given as charges e.g. '2+'
		Total	2	